Plasma-material interaction modeling work at the UIUC

J.P. Allain, D.A. Alman, M. Nieto, M.D. Coventry, and D.N. Ruzic

University of Illinois, Urbana-Champaign
Department of Nuclear, Plasma and Radiological
Engineering

Plasma-Material Interaction Group

ALPS Meeting, Princeton, New Jersey November 6-8, 2002

Outline of Work at the UIUC

- Molecular Dynamics simulations of hydrocarbon plasma-material interaction
- Molecular Dynamics simulations of liquid lithium to study low energy reflection
- Analytical studies of backscattered and sputtered charge fraction at low energies
- FIRE modeling of plasma-material interactions at the first wall and divertor regions
- Liquid metal erosion work in IIAX

Methane incident at 5 eV and 45 degrees – Breakup

Molecular dynamics modeling of carbon based surfaces

- Determined reflection coefficients for carbon dimers (C₂) and trimers (C₃)
 - Data, together with previous MolDyn results, used in WBC modeling of DiMES hydrocarbon spectroscopy experiment
- Work is ongoing to extend the hydrocarbon potential to higher energies
 - Brenner potential describes the bonding region of the hydrocarbon potential well
 - The small-separation, repulsive portion is not as good meaning higher energy collisions are less accurate
 - Higher energy capability is needed for above DiMES modeling, for example, where the plasma temperature is 20 eV
 - A new high-energy potential has been implemented for energies above 20 eV using the Kr-C potential splined to the Brenner potential

Carbon-based surfaces used

- Up to now a hydrogen saturated graphite surface has been used
 - Prepared by bombarding originally pure graphite surface with hydrogen
- Developed a "soft" carbon layer
 - Formed by redeposition of thousands of hydrocarbons on an originally pure graphite surface
- In experiments, these layers tend to be:
 - Polymer-like
 - Less dense
 - Higher H:C ratio
 - Weakly bound → larger sputtering yield
- Reflection simulations of hydrocarbons from soft layers in progress
 - Initial results show less reflection

Previous:
H implanted in graphite, result ~0.4 H:C

New:
"soft" layer of
redeposited
hydrocarbons

Reflection of Carbon dimer and trimer molecules

- Carbon dimers tend to stick more readily than trimers
- We're investigating the physics behind this behavior
- The fully bonded central atom in the C₃ molecule my play an important role
 - Repulsive forces between this atom and the surface push the entire molecule away from the surface
 - C₃ then reflects more

MD modeling of lithium bombardment on liquid lithium surfaces

- Investigation of reflection of lithium atoms on liquid lithium surfaces continues
 - 0.35 and 2 eV incident energy
 - 45 degrees incident angle
 - 473 K and 723 K surface temperatures
- Major changes have been made to the code to better incorporate lithium
 - Enabling lithium runs to be integrated into the distributed computing system already in use for hydrocarbon modeling (giving ~10x speed-up)
 - Calculation of ion fraction of reflected/sputtered atoms now built in
 - New liquid lithium potential data included[†]

†L.E.Gonzalez, private communication (2002).

Liquid lithium simulation setup

- Temperature control is achieved by using a simple velocity scaling technique at each time step¹⁻³ to maintain the desired temperature at the edges of the surface.
- The resulting target surface is an amorphous liquid lithium surface 42.2 by 42.2 Å and 34.2 Å deep.

- 1. L. V. Woodcock, Chem. Phys. Lett. 10, 257 (1970).
- 2. D. J. Evans, Mol. Phys. 37, 1745 (1979).
- T. Schneider and E. Stoll, Phys. Rev. B 13, 1216 (1976).

Charge state of lithium reflected particles at low energy

- Analytical model developed by R. Brako and D.M. Newns¹ for the charge state of backscattered alkali atoms from metals.
- The model assumes that a single spinless atomic orbital participates in the charge transfer and uses the Newns-Anderson Hamiltonian to model the coupling of the atomic state of the particle to that of the metal.
- The model has found success in various areas of surface physics and has been found to accurately predict a number of experimental data including backscattering from alkali metals.

- 1. R. Brako and D.M. Newns, Rep. Prog. Phys. 52 (1989) 655.
- 2. J.B. Martson, et. al., Phys. Rev. B 48 (11) (1993) 7809.
- 3. H. Gnaser, "Low-Energy Ion Irradiation of Solid Surfaces", Springer, Berlin, 1999.
- 4. M.L. Yu, in "Sputtering by Particle Bombardment III", Springer, Berlin, 1991

Analytical solution in the Newns-Andersen Model

We have the spinless Newns-Andersen Hamiltonian which correlates the states of the outgoing particle state with the electronic state of the surface.

$$H(t) = \sum_{a,i} \left[\mathcal{E}_{a}^{(1)}(t) P_{1} + \mathcal{E}_{a}^{(2)}(t) P_{2} \right] c_{a}^{\dagger i} c_{ai} + \sum_{k,i} \mathcal{E}_{k} c_{k}^{\dagger i} c_{ki} + \left(\frac{1}{N} \right)^{1/2} \sum_{a,k,i} \left(\left[V_{a;k}^{(1)}(t) P_{1} + V_{a;k}^{(2)}(t) P_{2} \right] c_{a}^{\dagger i} c_{ki} + H.c. \right)$$

The tunneling probability is determined by the magnitude of the transition matrix element, V_{ak} between the atomic state |aU and the metal state |kU|. The atomic level is broadened in energy and the resonance level is a function of the distance from the surface¹, z. To calculate the ionization probability, P^+ one needs to know how Δ and $\varepsilon_a(z)$ vary along the outgoing particle trajectory, these can be approximated by²:

$$\varepsilon_a(z) = -I + \frac{e^2}{4(z - z_{im})} + V_{\text{max}}$$
obtain z_c

$$\Delta(z) = \Delta_o \exp(-\alpha z)$$

- 1. P. Nolander and J.C. Tully, Phys. Rev. B 42 (9) (1990) 5564.
- 2. N.D. Lang, Phys. Rev. B 27 (4) (1983) 2019.

Analytical solution in the Newns-Andersen Model (cont.)

The ionization probability is then obtained after two fitting parameters, α and Δ_o are fitted to experimental data. Then one sums over n trajectories to obtain an average probability¹.

$$P^{+} = \exp\left[\frac{-2\Delta(z_c)}{\hbar\alpha v_p}\right]$$

$$P_{total}^{+} \equiv \sum_{N=1}^{n} \frac{P_{N}^{+}(v_{p}, \Omega)}{N}$$

. G.A. Kimmel, et al. Phys. Rev B 43 (12) (1991) 9403.

Secondary ion sputtering fraction (Y⁺_{sp}) dependence on target temperature for Liquid Lithium

Andersen-Newns Model

Ionization probability of backscattered alkali atoms at low energy

- The ionization probability has a strong dependence on outgoing velocity and surface work function (which depends on the surface thermodynamic and chemical state).
- At lower outgoing velocities and oblique emissions, alkali backscattered atoms are neutralized near the surface.

• For liquid lithium without any adsorbates or oxides the average surface work function is 2.9 eV¹. For the case of 0.35 eV incident Li⁺ at 20-degree incidence, the average backscattered energy is 0.25 eV with an average elevation angle of 15 degrees. Its ion probability is about 20%

1. N.W. Aschcroft and N.D. Mermin, Solid State Physics, 1976, Saunders College Publishing

NSO/FIRE Modeling

- Current focus beryllium/tungsten mixed material erosion issues
- Beryllium from first wall is sputtered, and transported to the divertor
- Result is a Be/W mixture on the divertor surface
- Erosion behavior of this mixed material is critical to FIRE divertor performance
- Collaborative modeling effort, combining several computer codes
 - UEDGE, DEGAS2, VFTRIM, WBC, ITMC

Extrapolation of plasma parameters from UEDGE out to real wall

Plasma parameters are calculated from some scrape-off length, as in

$$n(x) = n_0 \exp\left(\frac{-x}{\lambda_i}\right)$$

where λ_i is calculated to fit the outermost zones in each i row.

Model for ion flux to wall

- Since the wall is tangent to the magnetic field, the flux comes from cross-field diffusion
- The perpendicular diffusion coefficient is estimated as the Bohm diffusion coefficient
- Anomalous cross-field transport model is now included and simulations are underway

FIRE Be/W mixed material analysis

- Included fueling sources in DEGAS2 modeling
 - 100 torr/l-s pellet injection
 - 100 torr/l-s gas puffing
- Be sputtering source from first wall is 8.9x10¹⁹ s⁻¹
- WBC+ analysis shows Be currents of
 - 4.1x10¹⁹ s⁻¹ to inner divertor
 - 9.8x10¹⁸ s⁻¹ to outer divertor

Be net erosion to tungsten plates remains low – Anomalous diffusion model will lead to larger net erosion. Results will be presented at APS-DPP in Orlando, FL

VFTRIM-3D Modeling Results

- Fractal dimension D = 2.05, Surface binding energy = 3.38 eV.
- Binary collision based on the Kr-C interaction potential and classical scattering kinematics.

Summary of WBC+ code

- Impurity transport code obtained from J.N. Brooks
- Determines the flux of Be from the wall arriving on the divertor
- Inputs to WBC+
 - FIRE Geometry & plasma background from modified UEDGE data
 - Results of DEGAS2/VFTRIM calculations
 - Flux of sputtered Be from the walls
 - Energy & angular distributions of sputtered Be
- Method
 - Particles are launched randomly by sampling the Be sputtering distributions obtained from VFTRIM
 - Neutrals move in straight line until ionized
 - Once ionized, they follow the magnetic field lines
 - Particles tracked until they hit a surface

Liquid-metal erosion studies in IIAX

Bohdansky-Sigmund-Yamamura thermal Model is shown to predict the temperature-dependent data of IIAX quite well for bombardment cases of He⁺ on liquid lithium. Cases for D⁺ and Li⁺ bombardment are currently being investigated.

Temperature dependence modeling of liquid lithium

- Developing and understanding of lithium erosion enhancement by:
 - Molecular Dynamics simulations
 - Using semi-analytical models
- We are also utilizing VFTRIM-3D with modifications for the enhancement
 - NSTX modeling: temperature dependence of both total and differential sputtering yields

Future PMI Modeling Work Plan

- Continue study of hydrocarbon reflection from "soft" and "hard" graphite surfaces.
- Continued study of low energy liquid lithium reflection and sputtering under fusion-relevant conditions.
- Study of deuterium treatment on liquid lithium erosion and study of enhanced sputtering with molecular dynamics modeling of liquid lithium.
- FIRE runs on first wall/ divertor mixing problem.
- Continue modifications on VFTRIM-3D for both enhanced sputtering and capability of modeling dynamic composition changes on the target sample as well as local saturation effects

